Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(10): 12178-12189, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33394421

RESUMO

Polyaromatic hydrocarbons (PAHs) are widely spread ecological contaminants. Antibiotic resistance genes (ARGs) are present with mobile genetic elements (MGE) in the bacteria. There are molecular evidences that PAHs may induce the development of ARGs in contaminated soils. Also, the abundance of ARGs related to tetracycline, sulfonamides, aminoglycosides, ampicillin, and fluoroquinolones is high in PAH-contaminated environments. Genes encoding the efflux pump are located in the MGE and, along with class 1 integrons, have a significant role as a connecting link between PAH contamination and enrichment of ARGs. The horizontal gene transfer mechanisms further make this interaction more dynamic. Therefore, necessary steps to control ARGs into the environment and risk management plan of PAHs should be enforced. In this review, influence of PAH on evolution of ARGs in the contaminated soil, and its spread in the environment, has been described. The co-occurrence of antibiotic resistance and PAH degradation abilities in bacterial isolates has raised the concerns. Also, presence of ARGs in the microbiome of PAH-contaminated soil has been discussed as environmental hotspots for ARG spread. In addition to this, the possible links of molecular interactions between ARGs and PAHs, and their effect on environmental health has been explored.


Assuntos
Antibacterianos , Microbiologia do Solo , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Saúde Ambiental , Genes Bacterianos , Hidrocarbonetos , Solo
2.
Sci Total Environ ; 757: 143777, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33220994

RESUMO

The increasing prevalence of antibiotic-resistant microorganisms in both clinical and environmental samples is of great concern for public health. In the present study, environmental samples from seven different sites, heavily contaminated with petroleum hydrocarbons has been examined for the antimicrobial resistome through metagenomic approach. The soil samples were found to be contaminated with high concentration of total petroleum hydrocarbons (average 45 g/kg), polyaromatic hydrocarbons (average ∑16PAH = 280 mg/kg), and heavy metals, which shapes the microbial community and their function. Proteobacteria was found to be predominant phylum in the contaminated habitat with the highest diversity (55.91%) followed by Actinobacteria (9.86%). Although the taxonomical abundance of the non-contaminated sample was not significantly different from contaminated samples, the functional abundance of genes related to antibiotic resistance was found to be higher up to 2 fold in contaminated samples. The comparative metagenomic analysis revealed a higher abundance of different antibiotic resistance genes, especially genes for fluoroquinolones was found to be higher up to 10 fold in contaminated samples. Moreover, the study has shown a significant difference in total functional diversity and abundance, mainly genes for aromatic compound metabolism and genes for phages, mobile genetic elements. These higher abundances of well recognized antibiotic resistance genes, multidrug efflux pumps, and integrons, suggest that the petroleum hydrocarbon contaminated sites can act as reservoirs for development of antibiotic resistance genes (ARGs). From this study, a significant link between the presence of petroleum hydrocarbon and the development of antibiotic resistance in the microbiome of contaminated habitat has been established.


Assuntos
Petróleo , Poluentes do Solo , Antibacterianos , Bactérias/genética , Hidrocarbonetos , Solo , Microbiologia do Solo , Poluentes do Solo/análise
3.
Environ Sustain (Singap) ; 4(3): 533-541, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38624491

RESUMO

The on-going coronavirus disease 19 (COVID-19) pandemic has caused a very high number of infections and deaths around the globe. The absence of vaccine/drugs to counter COVID-19 has scrambled scientific communities to repurpose available medicines/vaccines. As the virus is known to mutate, using the whole genome sequences, the transmission dynamics and molecular evolutionary models were evaluated for South Asian countries to determine the evolutionary rate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Phylogenetic analyses were done using the data available on National Center for Biotechnology Information (NCBI). Different nucleotide substitution models and molecular evolutionary models were analyzed to see how SARS-CoV-2 was transmitted in the populations. Models for the viral 'S' and 'N' protein from selected strains were constructed, validated, and analyzed to determine the mutations and discover the potential therapeutics against this deadly viral disease. We found that the Hasegawa-Kishino-Yano (HKY) nucleotide substitution model was the best model with the lowest Bayesian information criterion (BIC) scores. Molecular clock RelTime analysis showed the evolutionary rate of SARS-CoV-2 substitutions in the genome was at 95% confidence interval, and heterogeneity was observed. Several mutations in the viral S-protein were found with one in the receptor-binding domain concerning SARS-CoV-2/Wuhan-1/S-Protein. Nucleocapsid protein also showed mutations in the strains from India and Sri Lanka. Our analysis suggests that SARS-CoV-2 is evolving at a diverse rate. The mutation leading to substitution in the nucleotide sequence occurred in the genome during the transmission of COVID-19 among individuals in the South Asian countries.

4.
Rev Environ Health ; 35(4): 371-378, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-32681784

RESUMO

Bacterial pathogens resistant to multiple antibiotics are emergent threat to the public health which may evolve in the environment due to the co-selection of antibiotic resistance, driven by poly aromatic hydrocarbons (PAHs) and/or heavy metal contaminations. The co-selection of antibiotic resistance (AMR) evolves through the co-resistance or cross-resistance, or co-regulatory mechanisms, present in bacteria. The persistent toxic contaminants impose widespread pressure in both clinical and environmental setting, and may potentially cause the maintenance and spread of antibiotic resistance genes (ARGs). In the past few years, due to exponential increase of AMR, numerous drugs are now no longer effective to treat infectious diseases, especially in cases of bacterial infections. In this mini-review, we have described the role of co-resistance and cross-resistance as main sources for co-selection of ARGs; while other co-regulatory mechanisms are also involved with cross-resistance that regulates multiple ARGs. However, co-factors also support selections, which results in development and evolution of ARGs in absence of antibiotic pressure. Efflux pumps present on the same mobile genetic elements, possibly due to the function of Class 1 integrons (Int1), may increase the presence of ARGs into the environment, which further is promptly changed as per environmental conditions. This review also signifies that mutation plays important role in the expansion of ARGs due to presence of diverse types of anthropogenic pollutants, which results in overexpression of efflux pump with higher bacterial fitness cost; and these situations result in acquisition of resistant genes. The future aspects of co-selection with involvement of systems biology, synthetic biology and gene network approaches have also been discussed.


Assuntos
Resistência Microbiana a Medicamentos/genética , Microbiota/genética , Seleção Genética , Microbiologia do Solo
5.
PLoS One ; 15(1): e0225202, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31940351

RESUMO

Plasmids are potent vehicles for spread of antibiotic resistance genes in bacterial populations and often persist in the absence of selection due to efficient maintenance mechanisms. We previously constructed non-conjugative high copy number plasmid vectors that efficiently displace stable plasmids from enteric bacteria in a laboratory context by blocking their replication and neutralising their addiction systems. Here we assess a low copy number broad-host-range self-transmissible IncP-1 plasmid as a vector for such curing cassettes to displace IncF and IncK plasmids. The wild type plasmid carrying the curing cassette displaces target plasmids poorly but derivatives with deletions near the IncP-1 replication origin that elevate copy number about two-fold are efficient. Verification of this in mini IncP-1 plasmids showed that elevated copy number was not sufficient and that the parB gene, korB, that is central to its partitioning and gene control system, also needs to be included. The resulting vector can displace target plasmids from a laboratory population without selection and demonstrated activity in a mouse model although spread is less efficient and requires additional selection pressure.


Assuntos
Infecções Bacterianas/genética , Variações do Número de Cópias de DNA/genética , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Animais , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Conjugação Genética/genética , DNA Primase/genética , Modelos Animais de Doenças , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Especificidade de Hospedeiro/genética , Humanos , Camundongos , Plasmídeos/efeitos dos fármacos
6.
J Glob Antimicrob Resist ; 14: 78-82, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29505913

RESUMO

OBJECTIVES: Plasmids of different replicon types are believed to be associated with the carriage and transmission of antimicrobial resistance genes. The present study was undertaken to examine the association of blaCIT with particular plasmid types and to identify Escherichia coli strains involve in the maintenance of this resistance determinant in the plasmid. METHODS: Phenotypic screening of AmpC ß-lactamases was performed by the modified three-dimensional extract method, followed by antimicrobial susceptibility testing and determination of minimum inhibitory concentrations (MICs). Genotyping screening of ß-lactamase genes was performed by PCR assay, followed by sequencing. Transferability of the blaCMY gene was performed by transformation and conjugation experiments. Plasmid incompatibility typing and DNA fingerprinting by enterobacterial repetitive intergenic consensus (ERIC)-PCR were performed. RESULTS: Among 203 E. coli obtained from different clinical specimens (pus, urine, stool and sputum), 37 were detected as harbouring the blaCIT gene and sequencing of this gene showed nucleotide sequence similarity with the blaCMY-42 variant. This study revealed IncI1-type plasmids as carriers of blaCMY-42 and its propagation within E. coli ST5377, ST361 and ST672. According to the stability results, the blaCMY-42-encoding plasmid can be maintained in E. coli strains for a longer duration without any antimicrobial pressure. CONCLUSIONS: These finding document blaCMY-42 on IncI1-type plasmids, which are considered to be the main vehicles for the spread of blaCMY-42 in this hospital setting. Thus, a proper strategy should be developed to curb the expansion of IncI1-type plasmids in the hospital and community environment.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Plasmídeos/genética , Proteínas de Bactérias/genética , Escherichia coli/enzimologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/urina , Fezes/microbiologia , Genótipo , Humanos , Índia , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Escarro/microbiologia , Centros de Atenção Terciária/estatística & dados numéricos , beta-Lactamases/genética
7.
Indian J Med Res ; 145(5): 659-664, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28948957

RESUMO

BACKGROUND & OBJECTIVES: Pseudomonas aeruginosa possessing chromosomally inducible blaPDCalong with other intrinsic mechanism causes infection with high mortality rate. It is difficult to detect inducible AmpC enzymes in this organism and is usually overlooked by routine testing that may lead to therapeutic failure. Therefore, three different inducers were evaluated in the present study to assess their ability of induction of blaPDCin P. aeruginosa. METHODS: A total of 189 consecutive Pseudomonas isolates recovered from different clinical specimens (November 2011-April 2013) were selected for the study. Isolates were screened with cefoxitin for AmpC ß-lactamases and confirmed by modified three-dimensional extract test (M3DET). Inductions were checked using three inducers, namely, clavulanic acid, cefoxitin and imipenem along with ceftazidime. Molecular screening of AmpC ß-lactamase genes was performed by PCR assay. Antimicrobial susceptibility and minimum inhibitory concentrations (MICs) were determined, and repetitive extragenic palindromic-PCR of all blaPDCharbouring isolates was performed. RESULTS: Inducible phenotype was observed in 42 (24.3%) of 97 (56%) isolates confirmed by M3DET. Among these, 22 isolates harboured chromosomal blaPDCgene, and cocarriage of both chromosomal and plasmid-mediated blaAmpC genes was observed in seven isolates. Cefoxitin-ceftazidime-based test gave good sensitivity and specificity for detecting inducible AmpC enzymes. Isolates harbouring blaPDCshowed high MIC against all tested cephalosporins and monobactam. DNA fingerprinting of these isolates showed 22 different clones of P. aeruginosa. INTERPRETATION & CONCLUSIONS: P. aeruginosa harbouring inducible (chromosomal) and plasmid-mediated AmpC ß-lactamase is a matter of concern as it may limit therapeutic option. Using cefoxitin-ceftazidime-based test is simple and may be used for detecting inducible AmpC ß-lactamase amongst P. aeruginosa.


Assuntos
Proteínas de Bactérias/genética , Resistência às Cefalosporinas/genética , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , beta-Lactamases/genética , Cefoxitina/uso terapêutico , Cefalosporinas/química , Cefalosporinas/uso terapêutico , Impressões Digitais de DNA , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Infecções por Pseudomonas/enzimologia , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/patogenicidade
8.
BMC Res Notes ; 10(1): 145, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28376860

RESUMO

BACKGROUND: The current study reports dissemination of highly stable bla OXA-10 family of beta lactamases among diverse group of nosocomial isolates of Gram-negative bacilli within a tertiary referral hospital of the northern part of India. METHODS: In the current study, a total number of 590 Gram negative isolates were selected for a period of 1 year (i.e. 1st November 2011-31st October 2012). Members of Enterobacteriaceae and non fermenting Gram negative rods were obtained from Silchar Medical College and Hospital, Silchar, India. Screening and molecular characterization of ß-lactamase genes was done. Integrase gene PCR was performed for detection and characterization of integrons and cassette PCR was performed for study of the variable regions of integron gene cassettes carrying bla OXA-10. Gene transferability, stability and replicon typing was also carried out. Isolates were typed by ERIC as well as REP PCR. RESULTS: Twenty-four isolates of Gram-negative bacilli that were harboring bla OXA-10 family (OXA-14, and OXA16) with fact that resistance was to the extended cephalosporins. The resistance determinant was located within class I integron in five diverse genetic contexts and horizontally transferable in Enterobacteriaceae, was carried through IncY type plasmid. MIC values were above break point for all the tested cephalosporins. Furthermore, co-carriage of bla CMY-2 was also observed. CONCLUSION: Multiple genetic environment of bla OXA-10 in this geographical region must be investigated to prevent dissemination of these gene cassettes within bacterial population within hospital settings.


Assuntos
Infecção Hospitalar/microbiologia , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/enzimologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Farmacorresistência Bacteriana/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/efeitos dos fármacos , Feminino , Especificidade de Hospedeiro , Humanos , Índia , Integrons/genética , Masculino , Testes de Sensibilidade Microbiana , Família Multigênica , Especificidade da Espécie , Centros de Atenção Terciária
9.
Int J Antimicrob Agents ; 49(5): 642-645, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28365429

RESUMO

The blaOXA-23 group was considered as the first group of OXA-type ß-lactamases conferring carbapenem resistance and has been reported worldwide in Acinetobacter baumannii, however their presence in Escherichia coli is very rare and unique. This study describes an unusual occurrence of blaOXA-23 in 14 clinical isolates of E. coli obtained from intensive care unit patients admitted to a tertiary referral hospital in India. The blaOXA-23 gene was found located within a self-conjugative plasmid of IncFrepB and IncK incompatibility types and simultaneously carrying blaCTX-M-15, blaVEB-1, blaPER-1 and/or blaNDM-1. The copy number of blaOXA-23 within the IncK-type plasmid was inversely proportional to increasing concentrations of imipenem, whereas in the case of the IncFrepB-type the result was variable; and increased copy number of the IncK-type plasmid was observed with increasing concentrations of meropenem. Plasmids encoding blaOXA-23 could be successfully eliminated after single treatment and were found to be not highly stable, as complete loss of plasmids was observed within 5-10 days. This study emphasises that carbapenem stress invariably altered the copy number of two different Inc type plasmids encoding the blaOXA-23 resistance gene and also highlights a potential threat of clonal expansion of this class D carbapenemase through a heterologous host in this country, which is in second incidence globally.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Variações do Número de Cópias de DNA/genética , Escherichia coli/genética , Imipenem/farmacologia , Plasmídeos/genética , Tienamicinas/farmacologia , beta-Lactamases/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Dosagem de Genes/genética , Humanos , Índia , Unidades de Terapia Intensiva , Meropeném , Testes de Sensibilidade Microbiana , Tipagem Molecular , Centros de Atenção Terciária
10.
Indian J Med Microbiol ; 35(1): 137-139, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28303836

RESUMO

This study was undertaken to investigate OprD porin-mediated carbapenem nonsusceptibility in clinical isolates of Pseudomonas aeruginosa from a tertiary referral hospital of Northeast India. A total of 267 nonduplicate, consecutive clinical isolates of P. aeruginosa were obtained. Mutation and expression levels of OprD gene were determined in carbapenem-nonsusceptible carbapenemase-nonproducing isolates. Among 19 carbapenem-nonsusceptible carbapenemase-nonproducing isolates, 11 of them demonstrated variable band pattern while performing denaturing gradient gel electrophoresis with amplified products of OprD gene. Sequencing of variable band products revealed three mutation patterns in three isolates. Relevant decrease in expression of OprD gene could also be observed in them. All the three isolates exhibited a higher minimum inhibitory concentration for imipenem (64-128 µg/mL) compared to meropenem (16-64 µg/mL). Inactivating mutation and decreased expression of OprD contribute mainly to imipenem resistance as well as to meropenem.


Assuntos
Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Porinas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Eletroforese , Perfilação da Expressão Gênica , Técnicas de Genotipagem , Humanos , Imipenem/farmacologia , Índia , Testes de Sensibilidade Microbiana , Mutação , Pseudomonas aeruginosa/isolamento & purificação , Análise de Sequência de DNA , Centros de Atenção Terciária
11.
Ann Clin Microbiol Antimicrob ; 16(1): 13, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28320396

RESUMO

BACKGROUND: Treatment alternatives for DHA-1 harboring strains are challenging as it confers resistance to broad spectrum cephalosporins and may further limit treatment option when expressed at higher levels. Therefore, this study was designed to know the prevalence of DHA genes and analyse the transcription level of DHA-1 against different ß-lactam stress. METHODS: Screening of AmpC ß-lactamase phenotypically by modified three dimensional extract method followed by Antimicrobial Susceptibility and MIC determination. Genotyping screening of ß-lactamase genes was performed by PCR assay followed by their sequencing. The bla DHA-1 transcriptional response was evaluated under different cephalosporin stress by RT PCR. Transferability of bla DHA gene was performed by transformation and conjugation and plasmid incompatibility typing, DNA fingerprinting by enterobacterial repetitive intergenic consensus sequences PCR. RESULTS: 16 DHA-1 genes were screened positive from 176 Escherichia coli isolates and primer extension analysis showed a significant increase in DHA-1 mRNA transcription in response to cefotaxime at 8 µg/ml (6.99 × 102 fold), ceftriaxone at 2 µg/ml (2.63 × 103 fold), ceftazidime at 8 µg/ml (7.06 × 103 fold) and cefoxitin at 4 µg/ml (3.60 × 104 fold) when compared with untreated strain. These transcription data were found significant when analyzed statistically using one way ANOVA. Four different ESBL genes were detected in 10 isolates which include CTX-M (n = 6), SHV (n = 4), TEM (n = 3) and OXA-10 (n = 1), whereas, carbapenemase gene (NDM) was detected only in one isolate. Other plasmid mediated AmpC ß-lactamases CIT (n = 9), EBC (n = 2) were detected in nine isolates. All DHA-1 genes detected were encoded in plasmid and incompatibility typing from the transformants indicated that the plasmid encoding bla DHA-1 was carried mostly by the FIA and L/M Inc group. CONCLUSION: This study demonstrates the prevalence of DHA-1 gene in this region and highlights high transcription of DHA-1 when induced with different ß-lactam antibiotics. Therefore, cephalosporin treatment must be restricted for the patients infected with pathogen expressing this resistance determinant.


Assuntos
Antibacterianos/farmacologia , Resistência às Cefalosporinas , Cefalosporinase/biossíntese , Cefalosporinas/farmacologia , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/biossíntese , Escherichia coli/enzimologia , Transcrição Gênica/efeitos dos fármacos , Adulto , Idoso de 80 Anos ou mais , Cefalosporinase/genética , Cefalosporinase/metabolismo , Conjugação Genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Transferência Genética Horizontal , Técnicas de Genotipagem , Humanos , Índia/epidemiologia , Masculino , Testes de Sensibilidade Microbiana , Prevalência , Reação em Cadeia da Polimerase em Tempo Real
12.
Artigo em Inglês | MEDLINE | ID: mdl-28239454

RESUMO

BACKGROUND: New Delhi metallo beta-lactamase is known to compromise carbapenem therapy and leading to treatment failure. However, their response to carbapenem stress is not clearly known. Here, we have investigated the transcriptional response of blaNDM-1 and plasmid copy number alteration under carbapenem exposure. METHODS: Three blaNDM-1 harboring plasmids representing three incompatibility types (IncFIC, IncA/C and IncK) were inoculated in LB broth with and without imipenem, meropenem and ertapenem. After each 1 h total RNA was isolated, immediately reverse transcribed into cDNA and quantitative real time PCR was used for transcriptional expression of blaNDM-1. Horizontal transferability and stability of the plasmids encoding blaNDM-1 were also determined. Changes in copy number of blaNDM-1 harboring plasmids under the exposure of different carbapenems were determined by real time PCR. Clonal relatedness among the isolates was determined by pulsed field gel electrophoresis. RESULTS: Under carbapenem stress over an interval of time there was a sharp variation in the transcriptional expression of blaNDM-1 although it did not follow a specific pattern. All blaNDM-1 carrying plasmids were transferable by conjugation. These plasmids were highly stable and complete loss was observed between 92nd to 96th serial passages when antibiotic pressure was withdrawn. High copy number of blaNDM-1 was found for IncF type plasmids compared to the other replicon types. CONCLUSION: This study suggests that the single dose of carbapenem pressure does not significantly influence the expression of blaNDM-1 and also focus on the stability of this gene as well as the change in copy number with respect to the incompatible type of plasmid harboring resistance determinant.

13.
J Infect Chemother ; 23(4): 206-210, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28131738

RESUMO

BACKGROUND: New-Delhi metallo-ß-lactamase-7 with higher hydrolytic activity than its ancestor NDM-1 is emerging across the globe including India. In this study, we have investigated the genetic context of blaNDM-7 and alteration in plasmid copy number under concentration gradient carbapenem stress. MATERIALS AND METHODS: Six blaNDM-7 producing Escherichia coli isolates were obtained from Silchar Medical College and Hospital and the co-existence of other ß-lactamases and transferability of this resistant determinant was determined by transformation and conjugation assay followed by typing of the plasmid by PBRT method. Genetic context and plasmid stability of blaNDM-7 was also determined. The change in copy number of transconjugable plasmid carrying blaNDM-7 under exposure of different carbapenem antibiotics was determined by quantitative Real Time PCR. RESULTS: All the six isolates carrying blaNDM-7 were conjugatively transferable through an IncX3-type plasmid and were also found to co-harbor blaCTX-M-15. Genetic analysis of blaNDM-7 showed an association of ISAba125, IS5 and a truncated portion of ISAba125 in the upstream region and bleMBL gene in the downstream region of blaNDM-7. Complete loss of the plasmids carrying blaNDM-7 was observed between 85th to 90th serial passages when antibiotic pressure was withdrawn. After analyzing the relative copy number it was observed that the copy number of the blaNDM-7 encoding plasmid was highly affected by the concentration of ertapenem. CONCLUSION: The present study has first demonstrated presence of IncX3-type plasmid encoding blaNDM-7 within nosocomial isolates of E. coli. Measures must be taken to prevent or atleast slowdown the emergence of this resistance determinant in this country.


Assuntos
Proteínas de Bactérias/genética , Escherichia coli/genética , Plasmídeos/genética , Carbapenêmicos/farmacologia , Conjugação Genética/genética , Ertapenem , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Humanos , Índia , Plasmídeos/efeitos dos fármacos , beta-Lactamases/genética , beta-Lactamas/farmacologia
14.
Microb Drug Resist ; 23(2): 133-138, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27214038

RESUMO

The expression of extended-spectrum beta-lactamases directly interferes with the treatment options in a clinical setting. It is not clearly defined why bacteria acquire multiple beta-lactamases and how they are being expressed in antibiotic stress. With this key question, the study was designed to understand the transcriptional response in Escherichia coli harboring multiple blaESBLs against different oxyimino-cephalosporin stress. A total of 169 consecutive, nonduplicate oxyimino-cephalosporin-resistant isolates of E. coli were screened and were ESBL positive. Among them six isolates were found to harbor multiple beta-lactamase genes and we, as per our objective, selected them for this study. Molecular characterization was done by multiplex polymerase chain reaction (PCR) assay. Minimum inhibitory concentration, transcriptional expression, transferability, and plasmid incompatibility typing of multiple blaESBLs were carried out. Plasmid stability and antibiotic susceptibility of donor and transconjugants were performed. A total of six isolates were found to be harboring multiple ESBL genes and MIC above the breakpoint level against all the tested antibiotics. Quantitative real-time PCR showed that in basal level without antibiotic stress, SHV-148 expressed more, but with ceftriaxone stressed, expression of CTX-M-15 and SHV-148 was high. In case of PER-1, expression was high with ceftazidime stress. blaESBLs were horizontally transferable and originated through multiple inc types. Plasmids were stable till 115 serial passages. Pulsed-field gel electrophoresis results showed that multiple ESBL genes were spread through six pulsotypes. Our study concludes that acquisition of multiple ESBL genes in E. coli was a specific adaptation for survival against multiple oxyimino-cephalosporin stress in this clinical setting.


Assuntos
Cefalosporinas/uso terapêutico , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Transcrição Gênica/efeitos dos fármacos , beta-Lactamases/genética , Adulto , Idoso , Antibacterianos/uso terapêutico , Ceftazidima/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana/métodos , Pessoa de Meia-Idade , Plasmídeos/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos
15.
Infect Genet Evol ; 48: 34-39, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27964935

RESUMO

Two Klebsiella strains isolated from urine samples were positive for blaAmpC by PCR and showed sequence similarity with CMH-1 (98.6%) after sequencing. It also shares 82% similarity with ACT-1, 85% with MIR-1 and 81% with the chromosomal AmpC gene of Enterobacter cloacae. This gene was associated with the plasmid of IncK type. It has an open reading frame of 381 amino acid with four amino acid substitutions at position D144A, C189R, Q192E, and A195T as compared to CMH-1. When expressed in E.coli DH5α and E.coli strain B, this ß-lactamase conferred resistance to cefotaxime, ceftriaxone and ceftazidime. In addition, both in vitro and in silico analysis revealed that this cephalosporinase was inhibited by cefepime and carbapenem group of drugs. Therefore, this new plasmid-encoded AmpC type ß-lactamase gene was designated as CMH-2.


Assuntos
Proteínas de Bactérias/genética , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Domínio Catalítico , Simulação por Computador , Farmacorresistência Bacteriana/genética , Humanos , Klebsiella pneumoniae/enzimologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , beta-Lactamases/química , beta-Lactamas/farmacologia
17.
J Glob Antimicrob Resist ; 7: 72-77, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27668722

RESUMO

The therapeutic option of a carbapenem antibiotic is compromised in Pseudomonas aeruginosa owing both to acquired and intrinsic resistance mechanisms. In recent years, New Delhi metallo-ß-lactamase has been the focus as a predominant carbapenem resistance determinant. However, it is unclear which of the mechanisms might be adopted by a P. aeruginosa strain possessing both blaNDM-1 and an overexpressed MexAB-OprM system during carbapenem therapy. This study investigated the interplay of both mechanisms in clinical isolates of P. aeruginosa when exposed to meropenem. Five strains were used: (i) strain overexpressing MexAB-OprM but with no blaNDM-1; (ii) strain harbouring blaNDM-1 but expressing MexAB-OprM at basal level; (iii) strain possessing blaNDM-1 and overexpressing MexAB-OprM; (iv) P. aeruginosa PAO1; and (v) P. aeruginosa K2733-PAO1 (ΔMexAB-OprMΔMexCD-OprJΔMexEF-OprNΔMexXY-OprM) into which blaNDM-1 was cloned. Strains were incubated in Luria-Bertani broth with and without 1µg/mL meropenem. Total RNA was isolated at 45-min intervals and was immediately reverse transcribed to cDNA. This was repeated for 6h. Quantitative real-time PCR was performed for both resistance mechanisms. Meropenem exposure did not significantly elevate transcription of either the blaNDM-1 or mexA gene. However, an interesting finding was that upon single-dose exposure to carbapenem, the efflux pump system played a major role in bacterial survival compared with NDM-1. This study gives an insight into the bacterial response to carbapenem antibiotic when two different resistance mechanisms coexist. This type of study would be helpful in designing future antimicrobials.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Carbapenêmicos/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas aeruginosa/efeitos dos fármacos , beta-Lactamases/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , beta-Lactamases/genética
18.
Ann Clin Microbiol Antimicrob ; 15: 31, 2016 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-27154587

RESUMO

BACKGROUND: bla VIM-2 harboring Pseudomonas aeruginosa has been reported worldwide and considered as the most prevalent metallo-ß-lactamase after NDM which are found horizontally transferable and mostly associated with integron gene cassettes. The present study investigates the genetic background, transmission dynamics as well as stability of bla VIM-2 in clinical isolates of P. aeruginosa harbor bla NDM-1 as well which were collected from October 2012 to September 2013. METHODS: Two P. aeruginosa strains harboring bla VIM-2 along with bla NDM-1 were isolated from Silchar Medical College and Hospital, India. Genetic environment of these resistance determinants was determined and transferability was checked by transformation and conjugation assay which was further confirmed by Southern hybridization. Replicon typing was performed to determine the incompatibility group of the resistant plasmid and their stability was checked by serial passage method. Antimicrobial susceptibility pattern of the isolates was determined and their clonal relatedness was checked by pulsed field gel electrophoresis. RESULTS: bla VIM-2 was found to be horizontally transferable through an Inc F type plasmid of approximately 30 kb in size. bla VIM-2 was found to be associated with integron gene cassette and was flanked by two different types of cassette arrays. Both the isolates were co-harboring bla NDM-1 which was carried within Inc N type of plasmid with an approximate 24 kb in size and associated with ISAba125 in their upstream region. Reduced susceptibility rate as well as high MIC range was observed in case of wild strains and transformants carrying bla VIM-2 and bla NDM-1. CONCLUSIONS: The detection of this co-existence of multiple carbapenem resistance genes in this part of world is worrisome and further investigation is required in order to trace the source and to initiate proper treatment option.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/isolamento & purificação , beta-Lactamases/metabolismo , Adulto , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Feminino , Humanos , Índia , Integrons , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , beta-Lactamases/genética
20.
PLoS One ; 11(2): e0149156, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26866484

RESUMO

OBJECTIVES: The present study was undertaken to investigate the mutations that are present in mexR gene of multidrug resistant (MDR) isolates of Pseudomonas aeruginosa collected from a tertiary referral hospital of north east India. METHODS: 76 MDR clinical isolates of P. aeruginosa were obtained from the patients who were admitted to or attended the clinics of Silchar medical college and hospital. They were screened phenotypically for the presence of efflux pump activity by an inhibitor based method. Acquired resistance mechanisms were detected by multiplex PCR. Real time PCR was performed to study the expression of mexA gene of MexAB-OprM efflux pump in isolates with increase efflux pump activity. mexR gene of the isolates with overexpressed MexAB-OprM efflux pump was amplified, sequenced and analysed. RESULTS: Out of 76 MDR isolates, 24 were found to exhibit efflux pump activity phenotypically against ciprofloxacin and meropenem. Acquired resistance mechanisms were absent in 11 of them and among those isolates, 8 of them overexpressed MexAB-OprM. All the 8 isolates possessed mutation in mexR gene. 11 transversions, 4 transitions, 2 deletion mutations and 2 insertion mutations were found in all the isolates. However, the most significant observation was the formation of a termination codon at 35th position which resulted in the termination of the polypeptide and leads to overexpression of the MexAB-OprM efflux pump. CONCLUSIONS: This study highlighted emergence of a novel mutation which is probably associated with multi drug resistance. Therefore, further investigations and actions are needed to prevent or at least hold back the expansion and emergence of newer mutations in nosocomial pathogens which may compromise future treatment options.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Códon de Terminação , Proteínas de Membrana Transportadoras/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Repressoras/genética , Antibacterianos/farmacologia , Anti-Infecciosos/química , Sequência de Bases , Resistência a Múltiplos Medicamentos , Deleção de Genes , Perfilação da Expressão Gênica , Humanos , Índia , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Mutação , Reação em Cadeia da Polimerase , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Reação em Cadeia da Polimerase em Tempo Real , Homologia de Sequência do Ácido Nucleico , Centros de Atenção Terciária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA